home / content / pypi_packages

pypi_packages: sqlite-transform

This data as json

name summary classifiers description author author_email description_content_type home_page keywords license maintainer maintainer_email package_url platform project_url project_urls release_url requires_dist requires_python version yanked yanked_reason
sqlite-transform Tool for running transformations on columns in a SQLite database. [] # sqlite-transform ![No longer maintained](https://img.shields.io/badge/no%20longer-maintained-red) [![PyPI](https://img.shields.io/pypi/v/sqlite-transform.svg)](https://pypi.org/project/sqlite-transform/) [![Changelog](https://img.shields.io/github/v/release/simonw/sqlite-transform?include_prereleases&label=changelog)](https://github.com/simonw/sqlite-transform/releases) [![Tests](https://github.com/simonw/sqlite-transform/workflows/Test/badge.svg)](https://github.com/simonw/sqlite-transform/actions?query=workflow%3ATest) [![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/dogsheep/sqlite-transform/blob/main/LICENSE) Tool for running transformations on columns in a SQLite database. > **:warning: This tool is no longer maintained** > > I added a new tool to [sqlite-utils](https://sqlite-utils.datasette.io/) called [sqlite-utils convert](https://sqlite-utils.datasette.io/en/stable/cli.html#converting-data-in-columns) which provides a super-set of the functionality originally provided here. `sqlite-transform` is no longer maintained, and I recommend switching to using `sqlite-utils convert` instead. ## How to install pip install sqlite-transform ## parsedate and parsedatetime These subcommands will run all values in the specified column through `dateutils.parser.parse()` and replace them with the result, formatted as an ISO timestamp or ISO date. For example, if a row in the database has an `opened` column which contains `10/10/2019 08:10:00 PM`, running the following command: sqlite-transform parsedatetime my.db mytable opened Will result in that value being replaced by `2019-10-10T20:10:00`. Using the `parsedate` subcommand here would result in `2019-10-10` instead. In the case of ambiguous dates such as `03/04/05` these commands both default to assuming American-style `mm/dd/yy` format. You can pass `--dayfirst` to specify that the day should be assumed to be first, or `--yearfirst` for the year. ## jsonsplit The `jsonsplit` subcommand takes columns that contain a comma-separated list, for example a `tags` column containing records like `"trees,park,dogs"` and converts it into a JSON array `["trees", "park", "dogs"]`. This is useful for taking advantage of Datasette's [Facet by JSON array](https://docs.datasette.io/en/stable/facets.html#facet-by-json-array) feature. sqlite-transform jsonsplit my.db mytable tags It defaults to splitting on commas, but you can specify a different delimiter character using the `--delimiter` option, for example: sqlite-transform jsonsplit \ my.db mytable tags --delimiter ';' Values within the array will be treated as strings, so a column containing `123,552,775` will be converted into the JSON array `["123", "552", "775"]`. You can specify a different type for these values using `--type int` or `--type float`, for example: sqlite-transform jsonsplit \ my.db mytable tags --type int This will result in that column being converted into `[123, 552, 775]`. ## lambda for executing your own code The `lambda` subcommand lets you specify Python code which will be executed against the column. Here's how to convert a column to uppercase: sqlite-transform lambda my.db mytable mycolumn --code='str(value).upper()' The code you provide will be compiled into a function that takes `value` as a single argument. You can break your function body into multiple lines, provided the last line is a `return` statement: sqlite-transform lambda my.db mytable mycolumn --code='value = str(value) return value.upper()' You can also specify Python modules that should be imported and made available to your code using one or more `--import` options: sqlite-transform lambda my.db mytable mycolumn \ --code='"\n".join(textwrap.wrap(value, 10))' \ --import=textwrap The `--dry-run` option will output a preview of the transformation against the first ten rows, without modifying the database. ## Saving the result to a separate column Each of these commands accepts optional `--output` and `--output-type` options. These can be used to save the result of the transformation to a separate column, which will be created if the column does not already exist. To save the result of `jsonsplit` to a new column called `json_tags`, use the following: sqlite-transform jsonsplit my.db mytable tags \ --output json_tags The type of the created column defaults to `text`, but a different column type can be specified using `--output-type`. This example will create a new floating point column called `float_id` with a copy of each item's ID increased by 0.5: sqlite-transform lambda my.db mytable id \ --code 'float(value) + 0.5' \ --output float_id \ --output-type float You can drop the original column at the end of the operation by adding `--drop`. ## Splitting a column into multiple columns Sometimes you may wish to convert a single column into multiple derived columns. For example, you may have a `location` column containing `latitude,longitude` values which you wish to split out into separate `latitude` and `longitude` columns. You can achieve this using the `--multi` option to `sqlite-transform lambda`. This option expects your `--code` function to return a Python dictionary: new columns well be created and populated for each of the keys in that dictionary. For the `latitude,longitude` example you would use the following: sqlite-transform lambda demo.db places location \ --code 'return { "latitude": float(value.split(",")[0]), "longitude": float(value.split(",")[1]), }' --multi The type of the returned values will be taken into account when creating the new columns. In this example, the resulting database schema will look like this: ```sql CREATE TABLE [places] ( [location] TEXT, [latitude] FLOAT, [longitude] FLOAT ); ``` The code function can also return `None`, in which case its output will be ignored. You can drop the original column at the end of the operation by adding `--drop`. ## Disabling the progress bar By default each command will show a progress bar. Pass `-s` or `--silent` to hide that progress bar. Simon Willison   text/markdown https://github.com/simonw/sqlite-transform   Apache License, Version 2.0     https://pypi.org/project/sqlite-transform/   https://pypi.org/project/sqlite-transform/ {"Homepage": "https://github.com/simonw/sqlite-transform"} https://pypi.org/project/sqlite-transform/1.2.1/ ["dateutils", "tqdm", "click", "sqlite-utils", "pytest ; extra == 'test'"]   1.2.1 0  

Links from other tables

  • 10 rows from package in pypi_versions
  • 17 rows from package in pypi_releases
Powered by Datasette · Queries took 7.476ms