id,node_id,name,full_name,private,owner,html_url,description,fork,created_at,updated_at,pushed_at,homepage,size,stargazers_count,watchers_count,language,has_issues,has_projects,has_downloads,has_wiki,has_pages,forks_count,archived,disabled,open_issues_count,license,topics,forks,open_issues,watchers,default_branch,permissions,temp_clone_token,organization,network_count,subscribers_count,readme,readme_html,allow_forking,visibility,is_template,template_repository,web_commit_signoff_required,has_discussions 195696804,MDEwOlJlcG9zaXRvcnkxOTU2OTY4MDQ=,datasette-cors,simonw/datasette-cors,0,9599,https://github.com/simonw/datasette-cors,Datasette plugin for configuring CORS headers,0,2019-07-07T21:03:11Z,2021-02-27T00:31:13Z,2019-07-11T04:40:57Z,,11,9,9,Python,1,1,1,1,0,0,0,0,1,apache-2.0,"[""datasette"", ""datasette-plugin"", ""datasette-io""]",0,1,9,master,"{""admin"": false, ""push"": false, ""pull"": false}",,,0,3,"# datasette-cors [![PyPI](https://img.shields.io/pypi/v/datasette-cors.svg)](https://pypi.org/project/datasette-cors/) [![CircleCI](https://circleci.com/gh/simonw/datasette-cors.svg?style=svg)](https://circleci.com/gh/simonw/datasette-cors) [![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/simonw/datasette-cors/blob/master/LICENSE) Datasette plugin for configuring CORS headers, based on https://github.com/simonw/asgi-cors You can use this plugin to allow JavaScript running on a whitelisted set of domains to make `fetch()` calls to the JSON API provided by your Datasette instance. ## Installation pip install datasette-cors ## Configuration You need to add some configuration to your Datasette `metadata.json` file for this plugin to take effect. To whitelist specific domains, use this: ```json { ""plugins"": { ""datasette-cors"": { ""hosts"": [""https://www.example.com""] } } } ``` You can also whitelist patterns like this: ```json { ""plugins"": { ""datasette-cors"": { ""host_wildcards"": [""https://*.example.com""] } } } ``` ## Testing it To test this plugin out, run it locally by saving one of the above examples as `metadata.json` and running this: $ datasette --memory -m metadata.json Now visit https://www.example.com/ in your browser, open the browser developer console and paste in the following: ```javascript fetch(""http://127.0.0.1:8001/:memory:.json?sql=select+sqlite_version%28%29"").then(r => r.json()).then(console.log) ``` If the plugin is running correctly, you will see the JSON response output to the console. ","

datasette-cors

Datasette plugin for configuring CORS headers, based on https://github.com/simonw/asgi-cors

You can use this plugin to allow JavaScript running on a whitelisted set of domains to make fetch() calls to the JSON API provided by your Datasette instance.

Installation

pip install datasette-cors

Configuration

You need to add some configuration to your Datasette metadata.json file for this plugin to take effect.

To whitelist specific domains, use this:

{
    ""plugins"": {
        ""datasette-cors"": {
            ""hosts"": [""https://www.example.com""]
        }
    }
}

You can also whitelist patterns like this:

{
    ""plugins"": {
        ""datasette-cors"": {
            ""host_wildcards"": [""https://*.example.com""]
        }
    }
}

Testing it

To test this plugin out, run it locally by saving one of the above examples as metadata.json and running this:

$ datasette --memory -m metadata.json

Now visit https://www.example.com/ in your browser, open the browser developer console and paste in the following:

fetch(""http://127.0.0.1:8001/:memory:.json?sql=select+sqlite_version%28%29"").then(r => r.json()).then(console.log)

If the plugin is running correctly, you will see the JSON response output to the console.

",,,,,, 205429375,MDEwOlJlcG9zaXRvcnkyMDU0MjkzNzU=,swarm-to-sqlite,dogsheep/swarm-to-sqlite,0,53015001,https://github.com/dogsheep/swarm-to-sqlite,Create a SQLite database containing your checkin history from Foursquare Swarm,0,2019-08-30T17:37:29Z,2021-02-22T07:58:39Z,2021-01-18T04:36:03Z,,49,37,37,Python,1,1,1,1,0,1,0,0,1,apache-2.0,"[""sqlite"", ""foursquare"", ""swarm"", ""foursquare-api"", ""datasette"", ""dogsheep"", ""datasette-io"", ""datasette-tool""]",1,1,37,main,"{""admin"": false, ""push"": false, ""pull"": false}",,53015001,1,3,"# swarm-to-sqlite [![PyPI](https://img.shields.io/pypi/v/swarm-to-sqlite.svg)](https://pypi.org/project/swarm-to-sqlite/) [![Changelog](https://img.shields.io/github/v/release/dogsheep/swarm-to-sqlite?include_prereleases&label=changelog)](https://github.com/dogsheep/swarm-to-sqlite/releases) [![Tests](https://github.com/dogsheep/swarm-to-sqlite/workflows/Test/badge.svg)](https://github.com/dogsheep/swarm-to-sqlite/actions?query=workflow%3ATest) [![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/dogsheep/swarm-to-sqlite/blob/main/LICENSE) Create a SQLite database containing your checkin history from Foursquare Swarm. ## How to install $ pip install swarm-to-sqlite ## Usage You will need to first obtain a valid OAuth token for your Foursquare account. You can do so using this tool: https://your-foursquare-oauth-token.glitch.me/ Simplest usage is to simply provide the name of the database file you wish to write to. The tool will prompt you to paste in your token, and will then download your checkins and store them in the specified database file. $ swarm-to-sqlite checkins.db Please provide your Foursquare OAuth token: Importing 3699 checkins [#########-----------------------] 27% 00:02:31 You can also pass the token as a command-line option: $ swarm-to-sqlite checkins.db --token=XXX Or as an environment variable: $ export FOURSQUARE_TOKEN=XXX $ swarm-to-sqlite checkins.db To retrieve just checkins within the past X hours, days or weeks, use the `--since=` option. For example, to pull only checkins that happened within the last 10 days use: $ swarm-to-sqlite checkins.db --token=XXX --since=10d Use `2w` for two weeks, `10h` for ten hours, `3d` for three days. In addition to saving the checkins to a database, you can also write them to a JSON file using the `--save` option: $ swarm-to-sqlite checkins.db --save=checkins.json Having done this, you can re-import checkins directly from that file (rather than making API calls to fetch data from Foursquare) like this: $ swarm-to-sqlite checkins.db --load=checkins.json ## Using with Datasette The SQLite database produced by this tool is designed to be browsed using [Datasette](https://datasette.io/). You can install the [datasette-cluster-map](https://datasette.io/plugins/datasette-cluster-map) plugin to view your checkins on a map. ","

swarm-to-sqlite

Create a SQLite database containing your checkin history from Foursquare Swarm.

How to install

$ pip install swarm-to-sqlite

Usage

You will need to first obtain a valid OAuth token for your Foursquare account. You can do so using this tool: https://your-foursquare-oauth-token.glitch.me/

Simplest usage is to simply provide the name of the database file you wish to write to. The tool will prompt you to paste in your token, and will then download your checkins and store them in the specified database file.

$ swarm-to-sqlite checkins.db
Please provide your Foursquare OAuth token:
Importing 3699 checkins  [#########-----------------------] 27% 00:02:31

You can also pass the token as a command-line option:

$ swarm-to-sqlite checkins.db --token=XXX

Or as an environment variable:

$ export FOURSQUARE_TOKEN=XXX
$ swarm-to-sqlite checkins.db

To retrieve just checkins within the past X hours, days or weeks, use the --since= option. For example, to pull only checkins that happened within the last 10 days use:

$ swarm-to-sqlite checkins.db --token=XXX --since=10d

Use 2w for two weeks, 10h for ten hours, 3d for three days.

In addition to saving the checkins to a database, you can also write them to a JSON file using the --save option:

$ swarm-to-sqlite checkins.db --save=checkins.json

Having done this, you can re-import checkins directly from that file (rather than making API calls to fetch data from Foursquare) like this:

$ swarm-to-sqlite checkins.db --load=checkins.json

Using with Datasette

The SQLite database produced by this tool is designed to be browsed using Datasette.

You can install the datasette-cluster-map plugin to view your checkins on a map.

",,,,,, 206649770,MDEwOlJlcG9zaXRvcnkyMDY2NDk3NzA=,google-takeout-to-sqlite,dogsheep/google-takeout-to-sqlite,0,53015001,https://github.com/dogsheep/google-takeout-to-sqlite,Save data from Google Takeout to a SQLite database,0,2019-09-05T20:15:15Z,2021-06-08T15:31:47Z,2021-02-24T00:34:55Z,,14,51,51,Python,1,1,1,1,0,4,0,0,6,apache-2.0,"[""google"", ""sqlite"", ""datasette"", ""dogsheep"", ""datasette-io"", ""datasette-tool""]",4,6,51,master,"{""admin"": false, ""push"": false, ""pull"": false}",,53015001,4,3,"# google-takeout-to-sqlite [![PyPI](https://img.shields.io/pypi/v/google-takeout-to-sqlite.svg)](https://pypi.org/project/google-takeout-to-sqlite/) [![CircleCI](https://circleci.com/gh/dogsheep/google-takeout-to-sqlite.svg?style=svg)](https://circleci.com/gh/dogsheep/google-takeout-to-sqlite) [![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/dogsheep/google-takeout-to-sqlite/blob/master/LICENSE) Save data from google-takeout to a SQLite database. ## How to install $ pip install google-takeout-to-sqlite Request your Google data from https://takeout.google.com/ - wait for the email and download the zip file. This tool only supports a subset of the available options. More will be added over time. ## My Activity You can request the ""My Activity"" export and then import it with the following command: $ google-takeout-to-sqlite my-activity takeout.db ~/Downloads/takeout-20190530.zip This will create a database file called `takeout.db` if one does not already exist. ## Location History Your location history records latitude, longitude and timestame for where Google has tracked your location. You can import it using this command: $ google-takeout-to-sqlite location-history takeout.db ~/Downloads/takeout-20190530.zip ## Browsing your data with Datasette Once you have imported Google data into a SQLite database file you can browse your data using [Datasette](https://github.com/simonw/datasette). Install Datasette like so: $ pip install datasette Now browse your data by running this and then visiting `http://localhost:8001/` $ datasette takeout.db Install the [datasette-cluster-map](https://github.com/simonw/datasette-cluster-map) plugin to see your location history on a map: $ pip install datasette-cluster-map ","

google-takeout-to-sqlite

Save data from google-takeout to a SQLite database.

How to install

$ pip install google-takeout-to-sqlite

Request your Google data from https://takeout.google.com/ - wait for the email and download the zip file.

This tool only supports a subset of the available options. More will be added over time.

My Activity

You can request the ""My Activity"" export and then import it with the following command:

$ google-takeout-to-sqlite my-activity takeout.db ~/Downloads/takeout-20190530.zip

This will create a database file called takeout.db if one does not already exist.

Location History

Your location history records latitude, longitude and timestame for where Google has tracked your location. You can import it using this command:

$ google-takeout-to-sqlite location-history takeout.db ~/Downloads/takeout-20190530.zip

Browsing your data with Datasette

Once you have imported Google data into a SQLite database file you can browse your data using Datasette. Install Datasette like so:

$ pip install datasette

Now browse your data by running this and then visiting http://localhost:8001/

$ datasette takeout.db

Install the datasette-cluster-map plugin to see your location history on a map:

$ pip install datasette-cluster-map
",,,,,, 291339086,MDEwOlJlcG9zaXRvcnkyOTEzMzkwODY=,airtable-export,simonw/airtable-export,0,9599,https://github.com/simonw/airtable-export,"Export Airtable data to YAML, JSON or SQLite files on disk",0,2020-08-29T19:51:37Z,2021-06-08T17:30:30Z,2021-04-09T23:41:52Z,https://datasette.io/tools/airtable-export,41,33,33,Python,1,1,1,1,0,5,0,0,6,apache-2.0,"[""yaml"", ""airtable"", ""airtable-api"", ""datasette-io"", ""datasette-tool""]",5,6,33,main,"{""admin"": false, ""push"": false, ""pull"": false}",,,5,3,"# airtable-export [![PyPI](https://img.shields.io/pypi/v/airtable-export.svg)](https://pypi.org/project/airtable-export/) [![Changelog](https://img.shields.io/github/v/release/simonw/airtable-export?include_prereleases&label=changelog)](https://github.com/simonw/airtable-export/releases) [![Tests](https://github.com/simonw/airtable-export/workflows/Test/badge.svg)](https://github.com/simonw/airtable-export/actions?query=workflow%3ATest) [![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/simonw/airtable-export/blob/master/LICENSE) Export Airtable data to files on disk ## Installation Install this tool using `pip`: $ pip install airtable-export ## Usage You will need to know the following information: - Your Airtable base ID - this is a string starting with `app...` - Your Airtable API key - this is a string starting with `key...` - The names of each of the tables that you wish to export You can export all of your data to a folder called `export/` by running the following: airtable-export export base_id table1 table2 --key=key This example would create two files: `export/table1.yml` and `export/table2.yml`. Rather than passing the API key using the `--key` option you can set it as an environment variable called `AIRTABLE_KEY`. ## Export options By default the tool exports your data as YAML. You can also export as JSON or as [newline delimited JSON](http://ndjson.org/) using the `--json` or `--ndjson` options: airtable-export export base_id table1 table2 --key=key --ndjson You can pass multiple format options at once. This command will create a `.json`, `.yml` and `.ndjson` file for each exported table: airtable-export export base_id table1 table2 \ --key=key --ndjson --yaml --json ### SQLite database export You can export tables to a SQLite database file using the `--sqlite database.db` option: airtable-export export base_id table1 table2 \ --key=key --sqlite database.db This can be combined with other format options. If you only specify `--sqlite` the export directory argument will be ignored. The SQLite database will have a table created for each table you export. Those tables will have a primary key column called `airtable_id`. If you run this command against an existing SQLite database records with matching primary keys will be over-written by new records from the export. ## Request options By default the tool uses [python-httpx](https://www.python-httpx.org)'s default configurations. You can override the `user-agent` using the `--user-agent` option: airtable-export export base_id table1 table2 --key=key --user-agent ""Airtable Export Robot"" You can override the [timeout during a network read operation](https://www.python-httpx.org/advanced/#fine-tuning-the-configuration) using the `--http-read-timeout` option. If not set, this defaults to 5s. airtable-export export base_id table1 table2 --key=key --http-read-timeout 60 ## Running this using GitHub Actions [GitHub Actions](https://github.com/features/actions) is GitHub's workflow automation product. You can use it to run `airtable-export` in order to back up your Airtable data to a GitHub repository. Doing this gives you a visible commit history of changes you make to your Airtable data - like [this one](https://github.com/natbat/rockybeaches/commits/main/airtable). To run this for your own Airtable database you'll first need to add the following secrets to your GitHub repository:
AIRTABLE_BASE_ID
The base ID, a string beginning `app...`
AIRTABLE_KEY
Your Airtable API key
AIRTABLE_TABLES
A space separated list of the Airtable tables that you want to backup. If any of these contain spaces you will need to enclose them in single quotes, e.g. 'My table with spaces in the name' OtherTableWithNoSpaces
Once you have set those secrets, add the following as a file called `.github/workflows/backup-airtable.yml`: ```yaml name: Backup Airtable on: workflow_dispatch: schedule: - cron: '32 0 * * *' jobs: build: runs-on: ubuntu-latest steps: - name: Check out repo uses: actions/checkout@v2 - name: Set up Python uses: actions/setup-python@v2 with: python-version: 3.8 - uses: actions/cache@v2 name: Configure pip caching with: path: ~/.cache/pip key: ${{ runner.os }}-pip- restore-keys: | ${{ runner.os }}-pip- - name: Install airtable-export run: | pip install airtable-export - name: Backup Airtable to backups/ env: AIRTABLE_BASE_ID: ${{ secrets.AIRTABLE_BASE_ID }} AIRTABLE_KEY: ${{ secrets.AIRTABLE_KEY }} AIRTABLE_TABLES: ${{ secrets.AIRTABLE_TABLES }} run: |- airtable-export backups $AIRTABLE_BASE_ID $AIRTABLE_TABLES -v - name: Commit and push if it changed run: |- git config user.name ""Automated"" git config user.email ""actions@users.noreply.github.com"" git add -A timestamp=$(date -u) git commit -m ""Latest data: ${timestamp}"" || exit 0 git push ``` This will run once a day (at 32 minutes past midnight UTC) and will also run if you manually click the ""Run workflow"" button, see [GitHub Actions: Manual triggers with workflow_dispatch](https://github.blog/changelog/2020-07-06-github-actions-manual-triggers-with-workflow_dispatch/). ## Development To contribute to this tool, first checkout the code. Then create a new virtual environment: cd airtable-export python -mvenv venv source venv/bin/activate Or if you are using `pipenv`: pipenv shell Now install the dependencies and tests: pip install -e '.[test]' To run the tests: pytest ","

airtable-export

Export Airtable data to files on disk

Installation

Install this tool using pip:

$ pip install airtable-export

Usage

You will need to know the following information:

You can export all of your data to a folder called export/ by running the following:

airtable-export export base_id table1 table2 --key=key

This example would create two files: export/table1.yml and export/table2.yml.

Rather than passing the API key using the --key option you can set it as an environment variable called AIRTABLE_KEY.

Export options

By default the tool exports your data as YAML.

You can also export as JSON or as newline delimited JSON using the --json or --ndjson options:

airtable-export export base_id table1 table2 --key=key --ndjson

You can pass multiple format options at once. This command will create a .json, .yml and .ndjson file for each exported table:

airtable-export export base_id table1 table2 \
    --key=key --ndjson --yaml --json

SQLite database export

You can export tables to a SQLite database file using the --sqlite database.db option:

airtable-export export base_id table1 table2 \
    --key=key --sqlite database.db

This can be combined with other format options. If you only specify --sqlite the export directory argument will be ignored.

The SQLite database will have a table created for each table you export. Those tables will have a primary key column called airtable_id.

If you run this command against an existing SQLite database records with matching primary keys will be over-written by new records from the export.

Request options

By default the tool uses python-httpx's default configurations.

You can override the user-agent using the --user-agent option:

airtable-export export base_id table1 table2 --key=key --user-agent ""Airtable Export Robot""

You can override the timeout during a network read operation using the --http-read-timeout option. If not set, this defaults to 5s.

airtable-export export base_id table1 table2 --key=key --http-read-timeout 60

Running this using GitHub Actions

GitHub Actions is GitHub's workflow automation product. You can use it to run airtable-export in order to back up your Airtable data to a GitHub repository. Doing this gives you a visible commit history of changes you make to your Airtable data - like this one.

To run this for your own Airtable database you'll first need to add the following secrets to your GitHub repository:

AIRTABLE_BASE_ID
The base ID, a string beginning `app...`
AIRTABLE_KEY
Your Airtable API key
AIRTABLE_TABLES
A space separated list of the Airtable tables that you want to backup. If any of these contain spaces you will need to enclose them in single quotes, e.g. 'My table with spaces in the name' OtherTableWithNoSpaces

Once you have set those secrets, add the following as a file called .github/workflows/backup-airtable.yml:

name: Backup Airtable

on:
  workflow_dispatch:
  schedule:
  - cron: '32 0 * * *'

jobs:
  build:
    runs-on: ubuntu-latest
    steps:
    - name: Check out repo
      uses: actions/checkout@v2
    - name: Set up Python
      uses: actions/setup-python@v2
      with:
        python-version: 3.8
    - uses: actions/cache@v2
      name: Configure pip caching
      with:
        path: ~/.cache/pip
        key: ${{ runner.os }}-pip-
        restore-keys: |
          ${{ runner.os }}-pip-
    - name: Install airtable-export
      run: |
        pip install airtable-export
    - name: Backup Airtable to backups/
      env:
        AIRTABLE_BASE_ID: ${{ secrets.AIRTABLE_BASE_ID }}
        AIRTABLE_KEY: ${{ secrets.AIRTABLE_KEY }}
        AIRTABLE_TABLES: ${{ secrets.AIRTABLE_TABLES }}
      run: |-
        airtable-export backups $AIRTABLE_BASE_ID $AIRTABLE_TABLES -v
    - name: Commit and push if it changed
      run: |-
        git config user.name ""Automated""
        git config user.email ""actions@users.noreply.github.com""
        git add -A
        timestamp=$(date -u)
        git commit -m ""Latest data: ${timestamp}"" || exit 0
        git push

This will run once a day (at 32 minutes past midnight UTC) and will also run if you manually click the ""Run workflow"" button, see GitHub Actions: Manual triggers with workflow_dispatch.

Development

To contribute to this tool, first checkout the code. Then create a new virtual environment:

cd airtable-export
python -mvenv venv
source venv/bin/activate

Or if you are using pipenv:

pipenv shell

Now install the dependencies and tests:

pip install -e '.[test]'

To run the tests:

pytest
",,,,,,